Epigenetics and Targeted Therapy in Acute Leukemia
نویسندگان
چکیده
Chromatin is a highly ordered structure consisting of repeats of nucleosomes connected by linker DNA. It consists of DNA, histone, and nonhistone proteins condensed into nucleoprotein complexes and it functions as the physiological template of all eukaryotic genetic information. Histones are small basic proteins containing a globular domain and a flexible charged NH2 terminus known as the histone tail, which protrudes from the nucleosome. Epigenetic codes are set up by modifications on the DNA (methylation) or on the histones (acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation, etc.), by different classes of enzymes in a precise and targeted manner. Posttranslational modification to histones affects chromatin structure and function resulting in altered gene expression and changes in cell behavior. These modifications do not alter the primary sequence of DNA but have an impact on gene expression regulation, most frequently gene suppression. They lead to pathological states in hematopoietic system resulting in acute leukemia. DNA methylation is catalyzed by DNA methyltransferases (DNMTs), of which three active enzymes have been identified in mammals, namely DNMT1, DNMT3A and DNMT3B. DNMT1 is responsible for maintaining pre-existing methylation patterns during DNA replication, while DNMT3A and DNMT3B are required for initiation of de novo methylation. Acetylation is a reversible process. The balance between acetylation (transcriptional activation) and deacetylation (transcriptional repression) is regulated by histone acetyltransferase (HATs) and histone deacetylases (HDACs) in specific lysine residues in the N-termini of histone tails and/or in transcription factors (eg, p53, E2F1, GATA1, RelA, YY1, and Mad/Max) without directly binding to the DNA (Minucci et al., 2006, Gallinare et al., 2007), and is critical in regulating gene expression. Mammalian HDACs are classified into three classes based on their homology to yeast HDACs. Class I HDACs (HDAC1, 2, 3, 8, and 11) are homologues of Sacharomyces cerevisiae histone deacetylase Rpd 3 (reduced potassium dependency 3) and those with greater similarity to yeast Hda1, are class II HDACs (Gray & Ekstrom, 2001; Gao et al., 2002; Kao et al., 2002). Class III HDACs are called Sirtuins, which are homologoues of yeast sir2 (silence information regulator). Histones can be mono-, di-, or tri-methylated at lysine and arginine residues by HMTs, and the recent identification of histone lysine demethylases such as KDM1/LSD1 and the Jumonji-domain (JMJD)-containing protein family shows that histone
منابع مشابه
Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia.
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic abnormalities. Recent discoveries have highlighted an additional important role of dysregulated epigenetic mechanisms in the pathogenesis of the disease. In contrast to genetic changes, epigenetic modifications are frequently reversible, which pro...
متن کاملEffective Dendritic Cell-based Immunotherapeutic Vaccines for Acute Myeloid Leukemia (AML)
Acute myeloid leukemia (AML) is a type of poor prognosis hematological malignancies characterized by heterogeneous clonal expansion of myeloid progenitors. Leukemic stem cells are thought to form the majority of a cell population in minimal residual diseases (MRDs) which are resistant to current chemotherapeutic regimens and mediate disease relapse. Current therapeutic vaccine strategies have d...
متن کاملApoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage
MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...
متن کاملPneumothorax and Acute Kidney Injury in the Early Phase of Acute Lymphoblastic Leukemia Induction Therapy due to Aspergillus Fumigatus and Pneumocystis Jirovecii Co-Infection: A Case Report
Leukemia is the most common malignancy in children which leads to immunosuppression and predisposes patients to opportunistic infections. We report a 12-year-old girl with acute lymphoblastic leukemia (ALL) who developed simultaneous infection with pneumocystis Jirovecii pneumonia and aspergillosis in the induction phase of chemotherapy. The patient developed pulmonary cavitation and pneumothor...
متن کاملSystemic Targeted Alpha Radiotherapy for Cancer
Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...
متن کاملAssessment of Thiopurine–based drugs according to Thiopurine S-methyltransferase genotype in patients with Acute Lymphoblastic Leukemia
For the past half century, thiopurines have earned themselves a reputation as effective anti-cancer and immunosuppressive drugs. Thiopurine S-methyltransferase (TPMT) is involved in the metabolism of all thiopurines and is one of the main enzymes that inactivates mercaptopurine. 6-MP is now used as a combination therapies for maintenance therapy of children with acute lymphocytic leukemia (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012